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Introduction

Introduction

In Chapter 5, MWL present a number of key statistical ideas. In this
module, I’m going to present many of the same ideas, with a
somewhat different topic ordering.
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The Theory of Linear Combinations Definitions

Linear Combination Theory
Basic Definitions

Suppose you take a course with two exams. Call them MT1 and
MT2. The final grade in the course weights the second midterm twice
as much as the first, i.e.,

G =
1

3
MT1 +

2

3
MT2 (1)

Equation 1 is a simple example of a linear combination, or weighted
sum.

MT1 and MT2 are the variables being linearly combined, and 1
3 and 2

3
are the linear weights.

In general a linear combination of p variables Xi , i = 1, p is any
expression that can be written in the form

K =

p∑
i=1

ciXi (2)
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The Theory of Linear Combinations Substantive Meaning

Linear Combination Theory
Substantive Meaning

Linear combinations are ubiquitous in statistics.

Their substantive meaning depends, of course, on context.

However, in general, once a set of variables is chosen, a linear
combination is essentially defined by its linear weights.
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The Theory of Linear Combinations Mean of a Linear Combination

The Mean of a Linear Combination

Consider the linear combination G = 1
3 X + 2

3 Y

The mean of the linear combination can, of course, be obtained by
computing all the linear combination scores on G , using the above
formula.

However, it is easy to prove that the mean of a linear combination is
the same linear combination of the means of the variables that are
linearly combined.

So G • = 1
3 X • + 2

3 Y •
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The Theory of Linear Combinations Variance of a Linear Combination

The Variance of a Linear Combination

Consider again the linear combination G = 1
3 X + 2

3 Y

We saw in the previous slide that we can easily express the mean of G
as a function of summary statistics on X and Y , and the linear
weights that are used in the combination.

A similar but more complicated situation holds for the variance of G .
Here is a heuristic rule for generating the variance formula.

1 Write the formula for the linear combination and algebraically square it,
i.e.,

(
1

3
X +

2

3
Y )2 =

1

9
(X 2 + 4XY + 4Y 2) (3)

2 Apply a “conversion rule” to the result: Leave constants alone, and
replace each squared variable by the variance of that variable, and each
product of two variables by the covariance of those two variables.

1

9
(s2

X + 4sXY + 4s2
Y ) (4)

James H. Steiger (Vanderbilt University) 7 / 50



The Theory of Linear Combinations Variance of a Linear Combination

The Variance of a Linear Combination

Consider again the linear combination G = 1
3 X + 2

3 Y

We saw in the previous slide that we can easily express the mean of G
as a function of summary statistics on X and Y , and the linear
weights that are used in the combination.

A similar but more complicated situation holds for the variance of G .
Here is a heuristic rule for generating the variance formula.

1 Write the formula for the linear combination and algebraically square it,
i.e.,

(
1

3
X +

2

3
Y )2 =

1

9
(X 2 + 4XY + 4Y 2) (3)

2 Apply a “conversion rule” to the result: Leave constants alone, and
replace each squared variable by the variance of that variable, and each
product of two variables by the covariance of those two variables.

1

9
(s2

X + 4sXY + 4s2
Y ) (4)

James H. Steiger (Vanderbilt University) 7 / 50



The Theory of Linear Combinations Variance of a Linear Combination

The Variance of a Linear Combination

Consider again the linear combination G = 1
3 X + 2

3 Y

We saw in the previous slide that we can easily express the mean of G
as a function of summary statistics on X and Y , and the linear
weights that are used in the combination.

A similar but more complicated situation holds for the variance of G .
Here is a heuristic rule for generating the variance formula.

1 Write the formula for the linear combination and algebraically square it,
i.e.,

(
1

3
X +

2

3
Y )2 =

1

9
(X 2 + 4XY + 4Y 2) (3)

2 Apply a “conversion rule” to the result: Leave constants alone, and
replace each squared variable by the variance of that variable, and each
product of two variables by the covariance of those two variables.

1

9
(s2

X + 4sXY + 4s2
Y ) (4)

James H. Steiger (Vanderbilt University) 7 / 50



The Theory of Linear Combinations Variance of a Linear Combination

The Variance of a Linear Combination

Consider again the linear combination G = 1
3 X + 2

3 Y

We saw in the previous slide that we can easily express the mean of G
as a function of summary statistics on X and Y , and the linear
weights that are used in the combination.

A similar but more complicated situation holds for the variance of G .
Here is a heuristic rule for generating the variance formula.

1 Write the formula for the linear combination and algebraically square it,
i.e.,

(
1

3
X +

2

3
Y )2 =

1

9
(X 2 + 4XY + 4Y 2) (3)

2 Apply a “conversion rule” to the result: Leave constants alone, and
replace each squared variable by the variance of that variable, and each
product of two variables by the covariance of those two variables.

1

9
(s2

X + 4sXY + 4s2
Y ) (4)

James H. Steiger (Vanderbilt University) 7 / 50



The Theory of Linear Combinations Variance of a Linear Combination

The Variance of a Linear Combination

Consider again the linear combination G = 1
3 X + 2

3 Y

We saw in the previous slide that we can easily express the mean of G
as a function of summary statistics on X and Y , and the linear
weights that are used in the combination.

A similar but more complicated situation holds for the variance of G .
Here is a heuristic rule for generating the variance formula.

1 Write the formula for the linear combination and algebraically square it,
i.e.,

(
1

3
X +

2

3
Y )2 =

1

9
(X 2 + 4XY + 4Y 2) (3)

2 Apply a “conversion rule” to the result: Leave constants alone, and
replace each squared variable by the variance of that variable, and each
product of two variables by the covariance of those two variables.

1

9
(s2

X + 4sXY + 4s2
Y ) (4)

James H. Steiger (Vanderbilt University) 7 / 50



The Theory of Linear Combinations Variance of a Linear Combination

The Covariance of Two Linear Combinations

Of course, one may define more than one linear combination on the
same set of variables.

To compute the covariance between the two linear combinations, you

1 Compute the algebraic cross-product of the two linear combination
formuas, and

2 Apply the same conversion rule used to compute the variance.

Since the correlation rXY relates to the variances and covariances via
the formula

rXY =
sXY

sX sY
(5)

we also have everything we need to compute the correlation between
two linear combinations.
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Introduction to Sampling Distributions and Point Estimation

Introduction to Sampling Distributions and Point
Estimation

In statistical estimation we use a statistic (a function of a sample) to
estimate a parameter, a numerical characteristic of a statistical
population.

In the preceding discussion of the binomial distribution, we briefly
discussed a well-known statistic, the sample proportion p, and how its
long-run distribution over repeated samples can be described, using
the binomial process and the binomial distribution as models.

We found that, if the binomial model is correct, we can describe the
exact distribution of p (over repeated samples) if we know N and π,
the parameters of the binomial distribution.

Unfortunately, as the diagram demonstrates, what probability theory
has given us is not quite what we need.
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Introduction to Sampling Distributions and Point Estimation

Introduction to Sampling Distributions and Point
Estimation

Probability theory “gets us halfway” to statistical inference.

In the following sections, we’ll investigate some approaches to
overcoming this problem.

To begin with, we should note some characteristics of sampling
distributions:

1 Exact sampling distributions are difficult to derive

2 They are often different in shape from the distribution of the
population from which they are sampled

3 They often vary in shape (and in other characteristics) as a function of
n.
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Sampling Error

Sampling Error

Consider any statistic θ̂ used to estimate a parameter θ.

For any given sample of size n, it is virtually certain that θ̂ will not be
equal to θ.

We can describe the situation with the following equation in random
variables

θ̂ = θ + ε (6)

where ε is called sampling error, and is defined tautologically as

ε = θ̂ − θ (7)

i.e., the amount by which θ̂ is wrong. In most situations, ε can be
either positive or negative.

James H. Steiger (Vanderbilt University) 12 / 50
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Properties of a Good Estimator Introduction

Introduction

The overriding principle in statistical estimation is that, all other
things being equal, we would like ε to be as small as possible.

However, other factors intervene—Factors like cost, time, and ethics.

In this section, we discuss some qualities that are considered in
general to characterize a good estimator.

We’ll take a quick look at unbiasedness, consistency, and efficiency.
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Properties of a Good Estimator Unbiasedness

Unbiasedness

An estimator θ̂ of a parameter θ is unbiased if E(θ̂) = θ, or,
equivalently, if E (ε) = 0, where ε is sampling error as defined in
Equation 7.

Ideally, we would like the positive and negative errors of an estimator
to balance out in the long run, so that, on average, the estimator is
neither high (an overestimate) nor low (an underestimate).
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Properties of a Good Estimator Consistency

Consistency

We would like an estimator to get better and better as n gets larger
and larger, otherwise we are wasting our effort gathering a larger
sample.

If we define some error tolerance ε, we would like to be sure that
sampling error ε is almost certainly less than ε if we let n get large
enough.

Formally, we say that an estimator θ̂ of a parameter θ is consistent if
for any error tolerance ε > 0, no matter how small, a sequence of
statistics θ̂n based on a sample of size n will satisfy the following

lim
n→∞

Pr
(∣∣∣θ̂n − θ∣∣∣ < ε

)
= 1 (8)
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Properties of a Good Estimator Consistency

Consistency

Example (An Unbiased, Inconsistent Estimator)

Consider the statistic D = (X1 + X2)/2 as an estimator for the population
mean. No matter how large n is, D always takes the average of just the
first two observations. This statistic has an expected value of µ, the
population mean, since

E

([
1

2
X1 +

1

2
X2

])
=

1

2
E (X1) +

1

2
E (X2)

=
1

2
µ+

1

2
µ

= µ

but it does not keep improving in accuracy as n gets larger and larger. So
it is not consistent.
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Properties of a Good Estimator Efficiency

Efficiency
All other things being equal, we prefer estimators with a smaller
sampling errors. Several reasonable measures of “smallness” suggest
themselves:

1 the average absolute error

2 the average squared error

Consider the latter. The variance of an estimator can be written

σ2
θ̂

= E
(
θ̂ − E

(
θ̂
))2

(9)

and when the estimator is unbiased, E
(
θ̂
)

= θ

So the variance becomes

σ2
θ̂

= E
(
θ̂ − θ

)2
= E

(
ε2
)

(10)

since θ̂ − θ = ε.

For an unbiased estimator, the sampling variance is also the average
squared error, and is a direct measure of how inaccurate the estimator
is, on average.

More generally, though, one can think of sampling variance as the
randomness, or noise, inherent in a statistic. (The parameter is the
“signal.”) Such noise is generally to be avoided.
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Properties of a Good Estimator Efficiency

Efficiency

The relative efficiency of two statistics is the ratio of their efficiencies,
which is the inverse of the ratio of their sampling variances.

Example (Relative Efficiency)

Suppose statistic A has a sampling variance of 5, and statistic B has a
sampling variance of 10. The relative efficiency of A relative to B is 2.
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Properties of a Good Estimator Sufficiency

Sufficiency

An estimator θ̂ is sufficient for estimating θ if it uses all the
information about θ available in a sample. The formal definition is as
follows:

1 Recalling that any statistic is a function of the sample, define θ̂(S) to
be a particular value of an estimator θ̂ based on a specific sample S .

2 An estimator θ̂ is a sufficient statistic for estimating θ if the conditional
distribution of the sample S given θ̂(S) does not depend on θ.

The fact that once the distribution is conditionalized on θ̂ it no longer
depends on θ, shows that all the information that θ might reveal in
the sample is captured by θ̂.
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Properties of a Good Estimator Maximum Likelihood

Maximum Likelihood

The likelihood of a sample of n independent observations is simply
the product of the probability densities of the individual observations.

Of course, if you don’t know the parameters of the population
distribution, you cannot compute the probability density of an
observation.

The principle of maximum likelihood says that the best estimator of a
population parameter is the one that makes the sample most likely.
Deriving estimators by the principle of maximum likelihood often
requires calculus to solve the maximization problem, and so we will
not pursue the topic here.
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Practical vs. Theoretical Considerations

Practical vs. Theoretical Considerations

In any particular situation, depending on circumstances, you may have
an overriding consideration that causes you to ignore one or more of
the above considerations — for example the need to make as small an
error as possible when using your own data.

In some situations, any additional error of estimation can be extremely
costly, and practical considerations may dictate a biased estimator if
it can be guaranteed that a bias can reduce ε for that sample.

James H. Steiger (Vanderbilt University) 21 / 50



Practical vs. Theoretical Considerations

Practical vs. Theoretical Considerations

In any particular situation, depending on circumstances, you may have
an overriding consideration that causes you to ignore one or more of
the above considerations — for example the need to make as small an
error as possible when using your own data.

In some situations, any additional error of estimation can be extremely
costly, and practical considerations may dictate a biased estimator if
it can be guaranteed that a bias can reduce ε for that sample.

James H. Steiger (Vanderbilt University) 21 / 50



Estimation Properties of the Sample Mean Distribution of the Sample Mean

Distribution of the Sample Mean
Sampling Mean and Variance

From the principles of linear combinations, we saw earlier that,
regardless of the shape of the population distribution, the mean and
variance of the sampling distribution of the sample mean X • based on
n i.i.d observations from a population with mean µ and variance σ2

are

1 E(X •) = µ

2 Var(X •) = σ2/n
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Estimation Properties of the Sample Mean Distribution of the Sample Mean

Distribution of the Sample Mean
Shape

The shape of the distribution of the sample mean depends on several
factors.

If the population distribution from which the sample was taken is
normal, then X • will have a distribution that is exactly normal.

Even if the distribution of the population is not normal, the Central
Limit Theorem implies that, as n becomes large, X • will still have a
distribution that is approximately normal.

This still leaves open the question of “how large is large enough”?

For symmetric distributions, the distribution of the sample mean is
often very close to normal with sample sizes as low as n = 25.

For heavily skewed distributions, convergence to a normal shape can
take much longer.
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The One-Sample z-Test The z-Statistic

The z-Statistic

As a pedagogical device, we first review the z-statistic for testing a
null hypothesis about a single mean when the population variance σ2

is somehow known.

Suppose that the null hypothesis is

H0 : µ = µ0

versus the two-sided alternative

H1 : µ 6= µ0

This will be a two-sided test. The easiest way to devise critical
regions for the test is to use a z-statistic, discussed on the next slide.
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The One-Sample z-Test The z-Statistic

The z-Statistic

We realize that, if the population mean is estimated with X • based
on a sample of n independent observations, the statistic

z =
X • − µ
σ/
√

n

will have a mean of zero and a standard deviation of 1.

If the population is normal, this statistic will also have a normal
distribution, but if the conditions are sufficiently good, convergence to
a normal distribution via the Central Limit Theorem effect will occur
at a reasonable sample size.

Note that, if the null hypothesis is true, then the test statistic

z =
X • − µ0

σ/
√

n
(12)

will also have a N(0, 1) distribution.

To have a rejection region that controls α at 0.05, we can select the
upper and lower 2.5% of the standard normal distribution, i.e. ±1.96.

More generally, the absolute value of the rejection point for this
statistic will be, for a test with T tails (either 1 or 2)

Φ−1(1− α/T ) (13)

with Φ−1() the standard normal quantile function.
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The One-Sample z-Test The z-Statistic

The z-Statistic
Calculating the Rejection Point

Example (Calculating the Rejection Point)

We can easily calculate the rejection point with a simple R function.

> Z1CriticalValue <- function(alpha, tails = 2) {
+ crit = qnorm(1 - alpha/abs(tails))

+ if (tails == 2 || tails == 1)

+ return(crit)

+ if (tails == -1)

+ return(-crit) else return(NA)

+ }

To use the function, input the significance level and the number of tails. If
the test is one-tailed, enter either 1 or −1 depending on whether the
critical region is on the low or high end of the number line relative to µ0.
The default is a two-sided test.

> Z1CriticalValue(0.05, 2)

[1] 1.96

> Z1CriticalValue(0.05, -1)

[1] -1.645
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The One-Sample z-Test The Non-Null Distribution of z

The Non-Null Distribution of z

Of course, H0 need not be true, and in many contexts is almost
certainly false.

The question then becomes one of statistical power.

Recall that the general approach to power calculation involves first
defining the critical region, then determining the distribution of the
test statistic under the true state of the world.

Suppose that the null hypothesis is that µ = µ0, but µ is actually
equal to some other value.

What will the distribution of the z-statistic be?
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The Non-Null Distribution of z

We can derive this easily using our algebra of variances and
covariances, because X • is the only random variable in the formula
for the z-statistic.

We can easily prove that the z-statistic has a distribution with a
mean of

√
(n)Es and a standard deviation of 1.

Es , the “standardized effect size,” is defined as

Es =
µ− µ0

σ
(14)

and is the amount by which the null hypothesis is wrong, re-expressed
in “standard deviation units.”
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Power Calculation with the One-Sample z

Now we demonstrate power calculation using the previous results.

Suppose our null hypothesis is one-sided, i.e.

H0 : µ ≤ 70 H1 : µ > 70 (15)

In this case, then, µ0 = 70. Assume now that σ = 10, and that the
true state of the world is that µ = 75. What will the power of the
z-statistic be if n = 25, and we perform the test with the significance
level α = 0.05?
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Power Calculation with the One-Sample z

In this case, the standardized effect size is

Es =
75− 70

10
= 0.50

The mean of the z-statistic is
√

nEs =
√

25× 0.50 = 2.50, and the
statistic has a standard deviation of 1.

The rejection point is one-tailed, and may be calculated using our
function as

> Z1CriticalValue(0.05, 1)

[1] 1.645

The power of the test may be calculated as the probability of
exceeding the rejection point of 1.645.

> 1 - pnorm(Z1CriticalValue(0.05, 1), 2.5, 1)

[1] 0.8038
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Power Calculation with the One-Sample z

Here is a picture of the situation.
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Automating the Power Calculation

Notice that the power can be calculated by computing the area to the
right of 1.645 in a normal distribution with a mean of 2.50 and a
standard deviation of 1, but this is also the area to the right of
1.645− 2.50 in a normal distribution with a mean of 0 and a standard
deviation of 1.

Since the area to the right of a negative value in a symmetric
distribution is equal to the area to the left of its positive equivalent,
we arrive at the fact that power in the 1-sample z-test is equal to the
area to the left of

√
n|Es | − |R| in a standard normal distribution. R

is the rejection point.

Note, we are assuming that the hypothesis test is two-sided, or that
the effect is in the hypothesized direction if the hypothesis is
one-sided. (Typically, one would not be interested in computing
power to detect an effect in the wrong direction!)

We are also ignoring the miniscule probability of rejection “on the
wrong side” with a two-sided test.
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Automating the Power Calculation
Since power is the area to the left of a point on the normal curve, a
power chart for the one-sample z-test has the same shape as the
cumulative probability curve for the normal distribution.
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Automating the Power Calculation

We can write an R function to compute power of the z-test.

> power.onesample.z <- function(mu, mu0, sigma, n, alpha, tails = 2) {
+ Es <- (mu - mu0)/sigma

+ R <- Z1CriticalValue(alpha, tails)

+ m <- sqrt(n) * abs(Es) - abs(R)

+ return(pnorm(m))

+ }
> power.onesample.z(75, 70, 10, 25, 0.05, 1)

[1] 0.8038
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Sample Size Calculation with the One-Sample z

We just calculated a power of 0.804 to detect a standardized effect of
0.50 standard deviations.

Suppose that this power is deemed insufficient for our purposes, that
we need a power of 0.95, and that we wish to manipulate power by
increasing sample size.

What is the minimum sample size necessary to achieve our desired
power?
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Sample Size Calculation with the One-Sample z
We could estimate the power by plotting the power over a range of
potential values of n, using our power function.

The plot shows we need an n of around 42–44.

> curve(power.onesample.z(75, 70, 10, x, 0.05, 1), 20, 60, xlab = "n", ylab = "Power")

> abline(h = 0.95, col = "red")
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Sample Size Calculation with the One-Sample z

Having narrowed things down, we could then input a vector of
possible values of n, and construct a table, thereby discovering the
value we need.

> n <- 40:45

> power <- power.onesample.z(75, 70, 10, n, 0.05, 1)

> cbind(n, power)

n power

[1,] 40 0.9354

[2,] 41 0.9402

[3,] 42 0.9447

[4,] 43 0.9489

[5,] 44 0.9527

[6,] 45 0.9563

Now it is clear that the minimum n is 44.
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Sample Size Calculation with the One-Sample z
An alternative, graphical approach would be to redraw the graph in a
narrower range, and draw vertical lines at the key values.

> curve(power.onesample.z(75, 70, 10, x, 0.05, 1), 40, 50, xlab = "n", ylab = "Power")

> abline(h = 0.95, col = "red")

> abline(v = 42)

> abline(v = 43)

> abline(v = 44)
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Sample Size Calculation with the One-Sample z

It turns out, we can, in this case, easily derive an analytic formula for
the required sample size.

Denoting power by P, the normal curve cumulative probability
function as Φ( ) and the number of tails by T , we saw that power
can be written

P = Φ
(√

n|Es | − |Φ−1(1− α/T )|
)

(16)

With some trivial algebraic manipulation, we can isolate n on one side
of the equation. The key is to remember that Φ( ) is an invertible
function.

n = ceiling

(
Φ−1(P) + Φ−1(1− α/T )

|Es |

)2

(17)

You may be wondering about the meaning of the term “ceiling” in
the above formula.

Usually n as calculated (without the final application of the ceiling
function) in the above will not be an integer, and to exceed the
required power, you will need to use the smallest integer that is not
less than n as calculated.

This value is called ceiling(n).
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Sample Size Calculation with the One-Sample z

The function returns the required n, and the actual power at that
sample size.

The actual power will generally exceed the requested power by a small
amount.

> Required.n.Z1 <- function(mu, mu0, sigma, alpha, power, tails) {
+ Es <- (mu - mu0)/sigma

+ R <- Z1CriticalValue(alpha, tails)

+ n <- ((qnorm(1 - alpha/tails) + qnorm(power))/(abs(Es)))^2

+ n <- ceiling(n)

+ return(c(n, power.onesample.z(mu, mu0, sigma, n, alpha, tails)))

+ }
> Required.n.Z1(75, 70, 10, 0.05, 0.95, 1)

[1] 44.0000 0.9527
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Direct Calculations from Standardized Effect Size

A common misconception in the early days of power analysis was that
one actually needed to know µ, µ0, and σ (or at least have educated
guesses) before proceeding.

Among others, Cohen, in his classic book on statistical power
analysis, suggested that one can proceed by positing typical values of
Es instead.

Es , after all, is a “metric-free” measure of effect size.

Cohen suggested simply using Es values of 0.20, 0.50, 0.80 as proxies
for “small,” “medium,” and “large” effects.

In the case of our power functions, inputting “dummy” values of
µ0 = 0 and σ = 1 allows you to enter Es directly as the µ parameter.
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Direct Calculations from Standardized Effect Size

Example (Power Calculation using Es)

Suppose you wish power of 0.90 to detect a “small” effect with a
two-sided test with α = .01. What is the required n? As shown below, the
required n is 372.

> Required.n.Z1(0.2, 0, 1, 0.01, 0.9, 2)

[1] 372.0 0.9
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Direct Calculations from Standardized Effect Size
A Caution

A number of authors have cautioned against relying too heavily on
Cohen’s guidelines.

For example, in some situations, a standardized effect size of 0.20
may represent an effect of enormous significance.

Different measuring instruments may contribute different levels of
error variance to different experiments. So σ reflects partly the effect
of measurement error, and partly the true individual variation in a
measured construct. Consequently, the “same” Es might reflect
different true effects, and vice-versa.
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Confidence Interval Estimation

Confidence Interval Estimation

Assume, for the time being, that we know that the distribution of X •
over repeated samples is as pictured below.

This graph demonstrates the distribution of X • over repeated
samples. In the above graph, as in any normal curve, 95% of the time
a value will be between z-score equivalents of −1.96 and +1.96.

James H. Steiger (Vanderbilt University) 44 / 50



Confidence Interval Estimation

Confidence Interval Estimation

Assume, for the time being, that we know that the distribution of X •
over repeated samples is as pictured below.

This graph demonstrates the distribution of X • over repeated
samples. In the above graph, as in any normal curve, 95% of the time
a value will be between z-score equivalents of −1.96 and +1.96.

James H. Steiger (Vanderbilt University) 44 / 50



Confidence Interval Estimation

Confidence Interval Estimation

These points are at a raw score that is 1.96 standard deviations below
the mean and 1.96 standard deviations above the mean.

Consequently, if we mark points on the graph at µ− 1.96σ/
√

n and
µ+ 1.96σ/

√
n, we will have two points between which X • will occur

95% of the time.

We can then say that

Pr

(
µ− 1.96

σ√
n
≤ X • ≤ µ+ 1.96

σ√
n

)
= .95 (18)

After applying some standard manipulations of inequalities, we can
manipulate the µ to the inside of the equality and the X • to the
outside, obtaining

Pr

(
X • − 1.96

σ√
n
≤ µ ≤ X • + 1.96

σ√
n

)
= .95 (19)
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Equation 19 implies that, if we take X • and add and subtract the
“critical distance” 1.96σ/

√
n, we obtain an interval that contains the

true µ, in the long run, 95% of the time.
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Taking a Stroll with Mr. Mu

Even if you are not familiar with the manipulation of inequalities,
there is a way of seeing how Equation 19 follows from Equation 18.

The first inequality states that there is a critical distance, 1.96σ/
√

n.
and X • is within that distance of µ 95% of the time, over repeated
samples.

Now imagine that you had a friend named Mr. Mu, and you went for
a stroll with him.

After a certain length of time, he turned to you and said, “You know,
about 95% of the time, you’ve been walking within 2 feet of me.”

You could, of course, reply that he has also been within 2 feet of you
95% of the time.

The point is, if X • is within a certain distance of µ 95% of the time,
it must also be the case (because distances are symmetric) that µ is
within the same distance of X • 95% of the time.
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Constructing a Confidence Interval

The confidence interval for µ, when σ is known, is, for a 100(1− α)%
confidence level, of the form

X • ± Φ−1(1− α/2)
σ√
n

(20)

where Φ−1(1− α/2) is a critical value from the standard normal
curve.

For example, Φ−1(.975) is equal to 1.96.
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Constructing a Confidence Interval

Example (A Simple Confidence Interval)

Suppose you are interested in the average height of Vanderbilt male
undergraduates, but you only have the resources to sample about 64 men
at random from the general population. You obtain a random sample of
size 64, and find that the sample mean is 70.6 inches. Suppose that the
population standard deviation is somehow known to be 2.5 inches. What
is the 95% confidence interval for µ?

Solution. Simply process the result of Equation 20. We have

70.6± 1.96
2.5√

64

or
70.6± .6125

We are 95% confident that the average height for the population of
interest is between 69.99 and 71.21 inches.
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Interval Estimation, Precision, and Sample Size Planning

A confidence interval provides an indication of precision of estimation
(narrower intervals indicate greater precision), while also indicating
the location of the parameter.

Note that the width of the confidence interval is related inversely to
the square root of n, i.e., one must quadruple n to double the
precision.

A number of authors have discussed sample size planning in the
context of providing an adequate level of precision, rather than
guaranteeing a specific level of power against a specified alternative.

Power and precision are interrelated, but they are not the same thing.
(C.P.)

James H. Steiger (Vanderbilt University) 50 / 50


	Introduction
	The Theory of Linear Combinations
	Definitions
	Substantive Meaning
	Mean of a Linear Combination
	Variance of a Linear Combination

	Introduction to Sampling Distributions and Point Estimation
	Sampling Error
	Properties of a Good Estimator
	Introduction
	Unbiasedness
	Consistency
	Efficiency
	Sufficiency
	Maximum Likelihood

	Practical vs. Theoretical Considerations
	Estimation Properties of the Sample Mean
	Distribution of the Sample Mean

	The One-Sample z-Test
	The z-Statistic
	The Non-Null Distribution of z
	Power Calculation with the One-Sample z
	Power-Based Sample Size Calculation with the One-Sample z
	Direct Calculations from Standardized Effect Size

	Confidence Interval Estimation
	Taking a Stroll with Mr. Mu
	Constructing a Confidence Interval


